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Simplified Description of the Field Distribution
in Finlines and Ridge Waveguidles and Its

Application to the Analysis
of E-Plane Discontinuities

RAAFAT R. MANSOUR, MEMBER, IEEE, ROBERTS. K. TONG, MEMBER, IEEE,

AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

.&tract —Using closed-form equations for the field distribution of the

eigenmodes in ridge wavegnides, this paper presents a simplified analysis

for ridge wavegnide E-plane discontinuities. The accuracy of the calculated

results is checked by comparison ~th experimental results. Closed-form

equations are also presented for the field distribution of the dominant

hybrid mode in unilateral and bllateraf finlines. The usefulness of these

equations in calculating the characteristic impedance and in determining

the plane of the circularly polarized magnetic field in unilateral finlines is

demonstrated.

I. INTRODUCTION

F INLINE and ridge waveguide circuits have frequently

been used in the design of microwave and millimeter-

wave components that require single-mode broad-band

operation. Such components usually incorporate different

types of E-plane discontinuities. Over the past several

years, various approaches [1]-[4] have been reported for

the characterization of finline discontinuities. However,

the great majority of these approaches were developed to

treat structures with infinitely thin metallization thickness.

Thus, they are not applicable to the analysis of ridge

waveguide discontinuities.

More recently, two rigorous approaches have been re-

ported for the characterization of ridge waveguide E-plane

discontinuities [5], [6]. The first one [5] uses the spectral-

domain technique and has the advantage of high numerical

efficiency. It is, however, limited to structures with in-

finitely thin ridges. The second approach [6] applies the

mode-matching technique and requires the determination

of the field distribution of the ridge waveguide eigen-

modes. In this approach, however, the field distribution of

the TE and TM modes in the ridge waveguide is obtained

by following the conventional method of solving the

boundary value problem first for the eigenvalue (the prop-

agation constant), then for the associated eigenvector. Be-
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sides its complexity, the computational effort involved in

this approach is extremely large.

On the other hand, approximate closed-form equations

for the field distribution of the TE modes in ridge wave-

guides have been reported ‘in [7]. These equations have

been also used with the variational technique in [8] to

analyze slot resonators. However, due to the coupling

between TE and TM modes, formulation of the scattering

matrix of the ridge waveguide discontinuity requires a

knowledge of the field distribution of both TE and TM

modes.

In this paper, we present closed-form equations for thle

field distribution of the TM modes in ridge waveguides.

The closed-form equations for both TE and TM modes are

then used with the conservation of complex power tech-

nique [9] to provide an efficient analysis of ridge wave-

guide E-plane discontinuities. The validity of this analysis

is verified by comparing our results with published results

as well as experimental results.

Although numerous closed-form equations have been

reported in the literature [10], [11] for calculating the

propagation constant in finlines, no paper has appeared

for quick and easy evaluation of the field distribution. In

this paper, we also present closed-form equations for the

field distribution for the dominant mode in unilateral and

bilateral finlines. In addition to the practical usefulness of

these equations in the design of nonreciprocal finline com-

ponents [12], these equations can also be used to derive a

closed-form expression for the characteristic impedance.

II. FIELD DESCRIPTION IN RIDGE WAVEGUIDES

The major complexity in formulating the scattering mi~-

trix of the discontinuity shown in Fig. 1 is in determining

the field distribution of the eigenmodes in the ridge wave-

guide region. The propagation constants of the eigenmodes

in ridge waveguides are related to the cutoff frequencies,

which can be easily calculated according to [9]. With the

assumption of a single term in the ridge gap (region II) of

Fig. 2 and N expansion terms in the trough region (regicm

I), and with the application of the boundary conditions cm
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the tangential fields at

TE and TM modes can

TE modes:
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x = 1, the field distribution of the -lst-
be written as
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Fig. 1. Ridge waveguide E-plane discontinuity,
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[ 1sin~(h+d)–sin~h (le)‘~= a~sin(a.1)(~7)
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Fig. 2. Ridge waveguide with magnetic wall symmetry.

where

(m/d )2cos (y.s/2)

(2a) ‘n= bsinanl[(m/d)2- (nm/b)2]

“[ 1
sin~(h+d)+sin~Jz . (2e)

The quantities /3, kc and y are related as

kC=2tr/AC

Equations (1) and (2) not only give the field distribution of

the dominant TE mode and dominant TM mode. They

also can be used to represent that of the higher order

modes. It should, however, be mentioned that due to the

(2c) use of a single expansion term (i.e., one mode) in the ridge
gap, these equations may not accurately describe the fields

near the edge of the ridge, but they provide a reasonable

description elsewhere. The validity of (1) and (2) will be

verified in Section III. A simple check of the validity of

(2d) this procedure can, however, be achieved by comparing the

ridge waveguide impedance calculated from these equa-
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Fig. 3. Characteristic impedsnce versus frequency in ridge waveguide:
a =19.0 mm, b = 8.55 mm, s = 0.3 mm, d =1.7 mm.

tions with other available data. The dominant mode char-

acteristic impedance may be defined as

V2 d2
z=~=~ (3a)

where V is the voltage across the ridge gap, d is the gap

width, and P is the power propagation in the z direction,

which can be written as

P=~Re~”x@. iizds. (3b)

Substituting (1) into (3b) gives

B
P=—

2cqJ [ ()[
i 14?12 ; 2: ; : “;;”l

; =1,2,3... n n 1
‘.[24a. 1

+ f lb%mnlz:~-=
n=o,l,2, . . .

‘d[=a (3C)

Fig. 3 illustrates a comparison between the characteristic

impedance calculated from the closed-form expression

given in (3) and that obtained using the variational tech-

nique [13]. It is noted that there is a good agreement.

111. ANALYSIS OF &PLANE RIDGE WAVEGUIDE

DISCONTINUITIES

The ridge waveguide discontinuity shown in Fig. 1 rep-

resents the basic building block in the design of many

microwave and millimeter-wave components, among them
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Fig. 4. Cascaded ridge waveguide E-plane discontinuity

transformers [6] and evanescent mode filters [14]. Having

determined the field distribution of the eigenmodes in

ridge waveguides, the conservation of complex power tech-

nique [9] can then be employed to evaluate the scattering

matrix of the ridge waveguide discontinuity. In view of [9],

the scattering parameters may be written as

s22=(PJ +H~P/H) -l(PJ-H~PJH) (4a)

S,2=H(Z+S22) (4b)

S21= 2(PJ + H@@- lHP/ (4C)

S1l = HS21 – Z (4d)

where ~ denotes Herti tian transpose. H is the Bfield

mode-matching matrix, which can be divided into four

submatrices:

The submatrices A

TE and TM modes

[1H=AB
CD”

(5)

and D give the coupling between the

in the rectangular waveguide and the

hybrid TE and TM modes in the ;idge waveguide, whereas

B and C indicate the cross-coupling between the modes in

the two guides. PI and P2 are diagonal matrices whose

diagonal elements represent the power carried by unit

amplitude modes in the rectangular and ridge waveguid e,

respectively. With the use of the generalized matrix tech-

nique [9], the overall scattering matrix of the cascaded

ridge waveguide disconl.inuity shown in Fig. 4 can easily

be evaluated.

In order to check the validity of this analysis, we conrl-

pare in Fig. 5 our results with those reported in [5] using

the spectral-domain technique. A good agreement is olb-
served. Fig. 6 also shows a comparison between our results

and experimental results for a structure with a ridge of

finite metallization thickness. It is noted that there is a

good agreement between the computed and the experimen-

tal results. The numerical results shown in Figs. 5 and 6

were obtained using (20 TE modes+ 10 TM modes) in the

rectangular waveguide and (eight TE modes+ four TM

modes) in the ridge waveguide.

In contrast to the variational technique used in [15], the
effect of the higher order mode coupling can be taken into

account in the present analysis. This in turn allows cas-

caded discontinuities to be accurately analyzed. Fig. 7

shows the transmission coefficient of two E-plane disconti-

nuities connected in cascade. It is observed that the calcu-

lated results agree with the measured results.
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Fig. 5. Normalized susceptance of an E-plane ridge waveguide discon-
tinuity: a = 22.86 mm, b = 10.16 mm, h = 0.0, ,S= 0.0, 1= 11.43 mm,
d = 2.79 mm. w =1.7 mm.
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Fig. 6. Magnitude of transmission coefficient of an E-plane ridge
wavegmde discontinuity: a = 19.05 mm, b = 9.5’24 mm, h = 0.0, S =
1.016 mm, 1= 9.017 mm, d =1.905 mm, w = 5.08 mm.

IV. FIELD DESCRIPTION IN UNILATERAL FINLINES

Due to the hybrid nature of the electromagnetic field in

unilateral finlines, the field distribution is expressed as a

summation of LSE and LSM modes. The propagation

constant can be calculated using the closed-form expres-

sions given in [10]. To demonstrate how the amplitudes of

the LSE and LSM modes are determined, consider the
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Fig. 7, Magnrtude of transmission coefficient of a cascaded E-plane
ridge waveguide discontmmty: a = 22.86 mm, b = 10.16 mm, h = 0.0,
S = 2.057 mm, I =10.40 mm, dl = d2 = 4.114 mm, 1’=12.192 mm,
WI = W2 = 1.524.
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Fig. 8. A unilateral finline structure.

unilateral finline structure shown in Fig. 8. Let the inci-

dent and reflected E-field mode amplitude vectors in

regions I, H, and III be respectively presented by CR, +

and Q (i= 1, 2 and 3). With the assumption of a

constant field in the fin gap, continuity of the tangential
field at xl= 11 and Xz = 11+ IZ gives

(6a)

(6b)

[G+lx,+[c,-]x, = [[G+L2+[G,-I .2] (6c)

where A4 is a column matrix whose elements represent the

coupling between the modes in region I and the constant

field in the fin gap. The amplitude vectors cl+ and ~,_



1829MANSOUR d U/.: SIMPLIFIED DESCtUPTION OF FIELD DISTRIBUTION

are also related by

[Gl+lx, =- Ll~l[cl-lxl (7a)

[c,+]., =~2[c2+ lx, (7b)

[G2-IX, =&[c2- 1.2 (7C)

[c,- 1.2 =~[c2+lx2 (7d)

[c,- lx,=-~,~,[cl+lx, (7e)

where L; (i =1, 2, and 3) are diagonal matrices with

diagonal elements given by L,j.. = e-J”n[r. The matrix S is

a diagonal matrix whose elements can be derived accord-

ing to [16, ch. 6]. Manipulating (6) and (7) gives the

amplitudes of the LSE and LSM modes in regions I, H,

and III. The field distribution of the dominant mode can

(8a)

(8b)

(9a)

(9b)

where An, B., @n, and 117. are below for the various

regions.

Region I (Unilateral Finline)

+.(x) = jsinal.x *n(x) = Cos aln.x

–2j/3W. 2(nv/b)W.
A.=

[e+Jf%III _ e-J%k] ‘n= [e@%III - e-J%lI]

Region II (Unilateral Finline)

c$n(X) = [~ne+Ja2.(x-11) + e-J~2.(x-[1)]

4-
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Fig. 9. A bilateral finline structure with magnetic wall symmetry.
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Fig. 10. Characteristic impe(iance versus frequency in unilateral fin-
lines: a = 2b = 4.7752 mm, 12= 0.127 mm, II= 2.3876 mm. c,= 2.2.

~n(.x) = [~Ee+~a2,,(x-~1) _ e-J~2,,(x-{1)]

Wn
A“=-Jqizn)

B.=r
b (1+ S,,)

S = e-J2., ,,(1 - Cn) - (1 + cn)e-J2a,,l’,,,
n (1+ Cn)- (1- ~“)e-J2~z/

Cn=$ for LSE modes
lx:n

cn=~ for LSM modes.
cp;n
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Region III (Unilateral Finline)

+~(x)=jsinfx3. (x-a) ~~(x)=coscq~(x–a)

Y*=
[e-,%,, + @72nL~n]

[e-,c%[, - e+&%4][l+ .s ]

n

where

I’. =lforn= OandrH=2forn=l,2,3 .,

For bilateral finlines, due to symmetry around the x axis

we only need to consider regions I and II, as shown in Fig.

9. The field distribution in region I is similar to that

described in region I of the unilateral finline structure

shown in Fig. 8. In region H, however, A ~, B,l @nand X.

are given as follows.

Region II (Bilateral Finline)

()+n(x) =Costxn x–; ()Vn(x)=jsinan x–j

e –Ja2” 12 /2

Yn =
[~+ e-J%”L] “

Having obtained the E and H field components, the

characteristic impedance can be evaluated as demonstrated

in Section II. In Fig. 10 we compare the characteristic

impedance of unilateral finlines calculated using (8) and

(9) with those reported in [17] using the spectral-domain

technique. It is noted that there is a good agreement. It

should, however, be mentioned that in [17] a constant field

is also assumed in the fin gap. In order to verify the

validity of (8) and (9), Fig. 10 also shows results calculated

using the more exact analysis reported in [18]. Good

agreement is observed when d/b is relatively small. Simi-

lar results were also obtained for bilateral finlines, as

illustrated in Fig. 11.

Another useful application of (8) and (9) is in determin-

ing the plane of the pure circularly polarized magnetic
field in unilateral finlines, which is needed in the design of

finline isolators [12]. Fig. 12 shows a comparison between

the normalized magnetic field components for a wave

propagating in the positive z direction calculated using (8)

and (9) and those obtained using the rigorous analysis [18].

The location of the plane of the circularly polarized mag-

netic field is also illustrated in this figure for the two cases

of d/b = 0.2 and d/b= 0.5.

It is concluded from Figs. 6, 7, 10, 11, and 12 that (l),

(2), (8), and (9) can reasonably well approximate the field

distribution in structures with relatively small gap sizes

(d/b < 0.2). This is, however, the case in most practical

applications.

V. CONCLUSIONS

Novel closed-form equations are reported for the fie[d

distribution of TM modes in ridge waveguides as well as

the dominant mode in unilateral and bilateral finlines.

Numerical results are presented which confirm the useful-

ness of these equations in calculating the characteristic

impedance and determining the location of the circularly

polarized magnetic field in unilateral finlines. The use of

these equations in achieving a simplified analysis of l?-

plane ridge waveguide discontinuities has been demon-

strated. The numerical results obtained for different dk+-

continuities agree well with the experimental data.
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