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Simplified Description of the Field Distribution
in Finlines and Ridge Waveguides and Its
Application to the Analysis
of E-Plane Discontinuities
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AND ROBERT H. MACPHIE, SENIOR MEMBER, IEEE

Abstract —Using closed-form equations for the field distribution of the
eigenmodes in ridge waveguides, this paper presents a simplified analysis
for ridge waveguide E -plane discontinuities. The accuracy of the calculated
results is checked by comparison with experimental results. Closed-form
equations are also presented for the field distribution of the dominant
hybrid mode in unilateral and bilateral finlines. The usefulness of these
equations in calculating the characteristic impedance and in determining
the plane of the circularly polarized magnetic field in unilateral finlines is
demonstrated.

I. INTRODUCTION

INLINE and ridge waveguide circuits have frequently

been used in the design of microwave and millimeter-
wave components that require single-mode broad-band
operation. Such components usually incorporate different
types of E-plane discontinuities. Over the past several
years, various approaches [1]-[4] have been reported for
the characterization of finline discontinuities. However,
the great majority of these approaches were developed to
treat structures with infinitely thin metallization thickness.
Thus, they are not applicable to the analysis of ridge
waveguide discontinuities.

More recently, two rigorous approaches have been re-
ported for the characterization of ridge waveguide E-plane
discontinuities [5], [6]. The first one [5] uses the spectral-
domain technique and has the advantage of high numerical
efficiency. It is, however, limited to structures with in-
finitely thin ridges. The second approach [6] applies the
mode-matching technique and requires the determination
of the field distribution of the ridge waveguide eigen-
modes. In this approach, however, the field distribution of
the TE and TM modes in the ridge waveguide is obtained
by following the conventional method of solving the
boundary value problem first for the eigenvalue (the prop-
agation constant), then for the associated eigenvector. Be-
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sides its complexity, the computational effort involved in
this approach is extremely large.

On the other hand, approximate closed-form equations
for the field distribution of the TE modes in ridge wave-
guides have been reported in [7]. These equations have
been also used with the variational technique in [8] to
analyze slot resonators. However, due to the coupling
between TE and TM modes, formulation of the scattering
matrix of the ridge waveguide discontinuity requires a
knowledge of the field distribution of both TE and T™M
modes.

In this paper, we present closed-form equations for the
field distribution of the TM modes in ridge waveguides.
The closed-form equations for both TE and TM modes are
then used with the conservation of complex power tech-
nique [9] to provide an efficient analysis of ridge wave-
guide E-plane discontinuities. The validity of this analysis
is verified by comparing our results with published results
as well as experimental results.

Although numerous closed-form equations have been
reported in the literature [10], [11] for calculating the -
propagation constant in finlines, no paper has appeared
for quick and easy evaluation of the field distribution. In
this paper, we also present closed-form equations for the
field distribution for the dominant mode in unilateral and
bilateral finlines. In addition to the practical usefulness of
these equations in the design of nonreciprocal finline com-
ponents [12], these equations can also be used to derive a
closed-form expression for the characteristic impedance.

II. FIELD DESCRIPTION IN RIDGE WAVEGUIDES

The major complexity in formulating the scattering ma-
trix of the discontinuity shown in Fig. 1 is in determining
the field distribution of the eigenmodes in the ridge wave-
guide region. The propagation constants of the eigenmodes
in ridge waveguides are related to the cutoff frequencies,
which can be easily calculated according to [9]. With the
assumption of a single term in the ridge gap (region II) of
Fig. 2 and N expansion terms in the trough region (regicn
I), and with the application of the boundary conditions cn
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the tangential fields at x =/, the field distribution of the
TE and TM modes can be written as
TE modes:
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Ridge waveguide E-plane discontinuity.

Fig. 2. Ridge waveguide with magnetic wall symmetry.
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Equations (1) and (2) not only give the field distribution of
the dominant TE mode and dominant TM mode. They
also can be used to represent that of the higher order
modes. It should, however, be mentioned that due to the
use of a single expansion term (i.e., one mode) in the ridge
gap, these equations may not accurately describe the fields
near the edge of the ridge, but they provide a reasonable
description elsewhere. The validity of (1) and (2) will be
verified in Section III. A simple check of the validity of
this procedure can, however, be achieved by comparing the
ridge waveguide impedance calculated from these equa-
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Fig. 3. Characteristic impedance versus frequency in ridge waveguide:
a=19.0 mm, b=8.55mm, s =03 mm, d=1.7 mm.

tions with other available data. The dominant mode char-
acteristic impedance may be defined as
VZ d2

T o= =
2P 2P (32)

where V is the voltage across the ridge gap, d is the gap
width, and P is the power propagation in the z direction,
which can be written as
1 = =g —
P=5R6/E><H*-azds. (3b)

Substituting (1) into (3b) gives
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Fig. 3 illustrates a comparison between the characteristic
impedance calculated from the closed-form expression
given in (3) and that obtained using the variational tech-
nique [13]. It is noted that there is a good agreement.

III. ANALYSIS OF E-PLANE RIDGE WAVEGUIDE

DISCONTINUITIES

The ridge waveguide discontinuity shown in Fig. 1 rep-
resents the basic building block in the design of many
microwave and millimeter-wave components, among them
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Fig. 4. Cascaded ridge waveguide E-plane discontinuity.

transformers [6] and evanescent mode filters [14]. Having
determined the field distribution of the eigenmodes in
ridge waveguides, the conservation of complex power tech-
nique [9] can then be employed to evaluate the scattering
matrix of the ridge waveguide discontinuity. In view of [9],
the scattering parameters may be written as

S,=(Pj+H'P{H) (P[-H'P/H)  (4a)
S,=H(I+S,) (4b)
S, =2(P}+ H'P}H ) "H'P} (4c)
S, = HS, — I (4d)

where 7 denotes Hermitian transpose. H is the E-field
mode-matching matrix, which can be divided into four
submatrices:

A B ‘-
H= [c D]' )
The submatrices 4 and D give the coupling between the
TE and TM modes in the rectangular waveguide and the
hybrid TE and TM modes in the ridge waveguide, whereas
B and C indicate the cross-coupling between the modes in
the two guides. P, and P, are diagonal matrices whose
diagonal elements represent the power carried by unit
amplitude modes in the rectangular and ridge waveguide,
respectively. With the use of the generalized matrix tech-
nique [9], the overall scattering matrix of the cascaded
ridge waveguide discontinuity shown in Fig. 4 can easily
be evaluated.

In order to check the validity of this analysis, we com-
pare in Fig. 5 our results with those reported in [5] using
the spectral-domain technique. A good agreement is ob-
served. Fig. 6 also shows a comparison between our results
and experimental results for a structure with a ridge of
finite metallization thickness. It is noted that there is a
good agreement between the computed and the experimen-
tal results. The numerical results shown in Figs. 5 and 6
were obtained using (20 TE modes+10 TM modes) in the
rectangular waveguide and (eight TE modes+ four TM
modes) in the ridge waveguide.

In contrast to the variational technique used in [15], the
effect of the higher order mode coupling can be taken into
account in the present analysis. This in turn allows cas-
caded discontinuities to be accurately analyzed. Fig. 7
shows the transmission coefficient of two E-plane disconti-
nuities connected in cascade. It is observed that the calcu-
lated results agree with the measured results.
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Fig. 5. Normalized susceptance of an E-plane ridge waveguide discon-
tinuity: @ =22.86 mm, »=10.16 mm, 2=0.0, $=0.0, /=11.43 mm,
d=2.79 mm, w=1.7 mm.
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Fig. 6. Magnitude of transmission coefficient of an E-plane ridge
waveguide discontinuity: ¢ =19.05 mm, b =9.524 mm, 2=00, S=
1.016 mm, /=9.017 mm, d =1.905 mm, w = 5.08 mm.

1V. FIeELD DESCRIPTION IN UNILATERAL FINLINES

Due to the hybrid nature of the electromagnetic field in
unilateral finlines, the field distribution is expressed as a
summation of LSE and LSM modes. The propagation
constant can be calculated using the closed-form expres-
sions given in [10]. To demonstrate how the amplitudes of
the LSE and LSM modes are determined, consider the
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Fig. 7. Magnitude of transmission coefficient of a cascaded E-plane
ridge waveguide discontinuity: ¢ =22.86 mm, b =10.16 mm, A = 0.0,
§=2057 mm, /=1040 mm, d;=d,=4114 mm, /'=12.192 mm,
w=w, =1.524.
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Fig. 8. A unilateral finline structure.

unilateral finline structure shown in Fig. 8. Let the inci-
dent and reflected E-field mode amplitude vectors in
regions I, II, and HI be respectively presented by CR
and C,. (i=1, 2 and 3). With the assumption of a
constant field in the fin gap, continuity of the tangential
field at x, =/, and x, =1 +1, gives

(6a)

(6b)

[Ql+]x1 +[_C1— ]xl =M
[§2+ ]xl + [Qz— ]x1 =M
(G a6 1 =[G )0 +IG 1] (60)

where M is a column matrix whose elements represent the
coupling between the modes in region I and the constant
field in the fin gap. The amplitude vectors C,, and C,_
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are also related by

[g1+]x1= _LlLl[Q1—]x1 (73)
(G ] = Lol G 1 (7v)
[QZ—]xl =L2[_C2— ]x2 (70)
[QzA]x2=S[Q2+]x2 (7d)
(G- 1, = —LiLs[ Gy s, (7e)

where L; (i=1, 2, and 3) are diagonal matrices with
diagonal elements given by L, ,, = e™/*" The matrix § is
a diagonal matrix whose elements can be derived accord-
ing to {16, ch. 6]. Manipulating (6) and (7) gives the
amplitudes of the LSE and LSM modes in regions I, II,
and III. The field distribution of the dominant mode can
then be approximated as follows:
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where 4,

B, ¢, and ¥, are below for the various
regions. ‘

Region I (Unilateral Finline)
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Fig. 9. A bilateral finline structure with magnetic wall symmetry.
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Fig. 10. Characteristic impedance versus frequency in unilateral fin-
lines: @ =2b=4.7752 mm, /, = 0.127 mm, /; = 2.3876 mm, €, = 2.2.
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Fig. 11. Characteristic impedance versus frequency in bilateral finlines: ¢ =2b=7.112 mm, /, = 0.125 mm, ¢, = 3.0.
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Region 111 (Unilateral Finline)
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For bilateral finlines, due to symmetry around the x axis
we only need to consider regions I and 1I, as shown in Fig.
9. The field distribution in region I is similar to that
described in region I of the unilateral finline structure
shown in Fig. 8. In region II, however, 4,, B, ¢, and ¥,

are given as follows.

Region II (Bilateral Finline)

a a
¢n(x)=cosan(x—5) \I'n(x)=jsinan(x—5)
na
A,=—jBW,Y, B,= IWLYn

e ~Jegaly /2

n [1+ e_JaZnIZ] :

Having obtained the £ and H field components, the
characteristic imipedance can be evaluated as demonstrated
in Section II. In Fig. 10 we compare the characteristic
impedance of unilateral finlines calculated using (8) and
(9) with those reported in [17] using the spectral-domain
technique. It is noted that there is a good agreement. It
should, however, be mentioned that in [17] a constant field
is also assumed in the fin gap. In order to verify the
validity of (8) and (9), Fig. 10 also shows results calculated
using the more exact analysis reported in [18]. Good
agreement is observed when d /b is relatively small. Simi-
lar results were also obtained for bilateral finlines, as
illustrated in Fig. 11.

Another useful application of (8) and (9) is in determin-
ing the plane of the pure circularly polarized magnetic
field in unilateral finlines, which is needed in the design of
finline isolators [12]. Fig. 12 shows a comparison between
the normalized magnetic field components for a wave
propagating in the positive z direction calculated using (8)
and (9) and those obtained using the rigorous analysis [18].
The location of the plane of the circularly polarized mag-
netic field is also illustrated in this figure for the two cases
of d/b=10.2 and d/b=10.5.

It is concluded from Figs. 6, 7, 10, 11, and 12 that (1),
(2), (8), and (9) can reasonably well approximate the field
distribution in structures with relatively small gap sizes
(d /b < 0.2). This is, however, the case in most practical
applications.
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V. CONCLUSIONS

Novel closed-form equations are reported for the field
distribution of TM modes in ridge waveguides as well as
the dominant mode in unilateral and bilateral finlines.
Numerical results are presented which confirm the useful-
ness of these equations in calculating the characteristic
impedance and determining the location of the circularly
polarized magnetic field in unilateral finlines. The use of
these equations in achieving a simplified analysis of E-
plane ridge waveguide discontinuities has been demon-
strated. The numerical results obtained for different dis-
continuities agree well with the experimental data.
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